Python | numpy
Numpy: Scientific computing with Python
- a powerful N-dimensional array object
- sophisticated (broadcasting) functions
- tools for integrating C/C++ and Fortran code
- useful linear algebra
,Fourier transform,and random number capabilities
Structure^1

Useful funcions^2
- Array Creation:
arange,array,copy,empty,empty_like,eye,fromfile,fromfunction,identity,linspace,logspace,mgrid,ogrid,ones,ones_like,r,zeros,zeros_like - Conversions:
ndarray.astype,atleast_1d,atleast_2d,atleast_3d,mat - Manipulations:
array_split,column_stack,concatenate,diagonal,dsplit,dstack,hsplit,hstack,ndarray.item,newaxis,ravel,repeat,reshape,resize,squeeze,swapaxes,take,transpose,vsplit,vstack - Questions:
all,any,nonzero,where - Ordering:
argmax,argmin,argsort,max,min,ptp,searchsorted,sort - Operations:
choose,compress,cumprod,cumsum,inner,ndarray.fill,imag,prod,put,putmask,real,sum - Basic Statistics:
cov,mean,std,var - Basic Linear Algebra:
cross,dot,outer,linalg.svd,vdot
Ordering
argmax^3
返回最大数的索引,参数axis默认0表示维度数。
二维
1
2
3
4
5
6import numpy as np
a=np.array([[1,5,5,2],
[9,6,2,8],
[3,7,9,1]])
print(np.argmax(a,axis=0)) #[1,2,2,1]
print(np.argmax(a,axis=1)) #[1,0,2]axis=0意为,返回的是每一列的最大索引(a[0][j],a[1][j]…)即逐行比较。
三维
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20import numpy as np
a = np.array([
[
[ 1, 5, 5, 2],
[ 9,-6, 2, 8],
[-3, 7,-9, 1]
],
[
[-1, 5,-5, 2],
[ 9, 6, 2, 8],
[ 3, 7, 9, 1]
]
])
print(np.argmax(a, axis=0))
#[[0 0 0 0]
#[0 1 0 0]
#[1 0 1 0]]
print(np.argmax(a, axis=1))
#[[1 2 0 1]
# [1 2 2 1]]应当明确对应轴在数组中的表现。三维时,axis=0,逐片比较;axis=1,逐行比较。
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 琴韵居!



